Contribution from the Department of Chemistry, Washington State University, U.S.A.

The Crystal Structure of $(C_2H_5NH_3)_2CuCl_4^*$

J. P. Steadman and R. D. Willett

Received February 17, 1970

The structure of the complex salt $(C_2H_5NH_3)_2CuCl_4$ has been determined by conventional X-ray diffraction techniques. The space group is Pbca with lattice constants a = 21.18 Å b = 7.47 Å, and c = 7.35 Å. A square planar $CuCl_4^{2-}$ ion was found with Cu-Cldistances of 2.28 Å. The coordination sphere about each copper atom is completed by sharing additional chlorine atoms from adjacent CuCl₄²⁻ ions yielding two Cu-Cl distance of 2.98 Å. This ties the CuCl₄²⁻ groups into a two-dimensional framework lying in the yz plane. The nitrogen atom is located in a « hole » formed by the chlorine atoms in this framework. Several short N-Cl distances are found which are presumably associated with hydrogen bonds. The ethyl groups are disordered in this structure.

Introduction

Recently there has been much interest in structural and electronic properties of copper(II) chloride complexes.^{1,2,3,4,5} Because of the thermochromic properties of several complexes between substituted ammonium chlorides and copper(II) chloride¹ as well as an indication that several of the yellow chlorocuprates contained essentially a square planar coordination around the copper atom, we have undertaken the structural study of the high temperature form of (C₂H₅NH₃)₂CuCl₄.

Experimental Section

The general method of preparation has been described by Remy and Laves.⁶ Single crystals were obtained most readily by slowly evaporating a stoichiometric mixture of C2H5NH3Cl and CuCl2 (or $CuCl_2 \cdot 2H_2O$ in methanol. The crystals grow as flat yellow sheets which are not hygroscopic and thus are one of the few stable anhydrous copper(II) chloride complexes. An infrared spectrum of a thin single crystal showed no evidence of an O-H bond, indicating that no solvent of crystallization was pre-

- (1963)
- (6) H. Remy and G. Laves, Ber., 66, 401 (1933).

The crystals grew with the (100), (011)) and sent. $(01\overline{1})$ faces normally developed. The crystals crush easily with cleavage taking place perpendicular to the a-axis. The compound is thermochromic, becoming a light green below $-39^{\circ}C.^{7}$ This color change must be associated with a change in the coordination around the copper atom.

The lattice constants and space group have been reported previously¹ and were found to be a = $21.18 \pm .02$ Å, $b = 7.47 \pm .01$ Å, and $c = 7.35 \pm$ 01 Å with space group Pbca. The two crystals used to collect intensity data were mounted in Lindemann glass capillaries. The density was found to be 1.701 g/ml by a flotation technique. The calculated density, assuming four molecules per unit cell, is 1.703 g/ml.

Weissenberg intensity photographs were taken using Mo K α radiation. Time exposures of 1 2/3, 10, and 60 hours were taken using the multiple film technique. The zero through sixth layers were collected from a crystal mounted with the [001] direction parallel to the rotation axis. Similarly, the zero through tenth layers; with the exception of the ninth, were collected from a crystal mounted with the $[01\overline{1}]$ direction parallel to the rotation axis. In this manner 1116 reflections were recorded. A total of 546 unique reflections were measured, 423 of which had an observable intensity. The intensities of all reflections were estimated visually. The weights for the reflections, for use in the least squares refinement procedure, were assigned using a modified version of the Hughes weighting scheme.8

Solutions of Structure

With four molecules per unit cell, the copper atoms are required to be located in a four fold set of spe-

 $(W)^{-i_1} = C(F_o/F_{med})$ when $I_o > I_{med}$ $(W)^{-4} = C$

when $2I_{min} < I_o < I_{med}$ $(W)^{-1/2} = C(\sqrt{2F_{min}}/F_o)$ when $I_o < 2I_{med}$

where \mathbf{l}_{o} , \mathbf{I}_{med} , \mathbf{I}_{min} are the observed intensity, median intensity for a given layer, and minimum intensity for a given layer respectively and C is a constant. F_o , F_{med} , and F_{min} are defined similarly. Unobserved reflections were assigned an intensity equal to $\frac{1}{2}I_{\min}$ and omitted from definement if $F_{calc} < F_o$.

Steadman, Willett | Crystal Structure of (C₂H₅NH₃)₂CuCl₄

^(*) Taken in part from the M. S. thesis of J. Paul Steadman, Washington State University.
(1) Roger D. Willet, J. Chem. Phys., 41, 2243 (1964).
(2) Roger D. Willett, JD. Dwiggens, Jr., R. Kruh, and R. E. Rundle, J. Chem. Phys., 38, 2429 (1963).
(3) Mark Sharnoff, J. Chem. Phys., 42, 3383 (1965).
(4) W. E. Hatfield and T. S. Piper, Inorg. Chem., 3, 841 (1964).
(5) C. Furlani and G. M. Morpurgo, Theor. Chim. Acta, 1, 102 (1963).

⁽⁷⁾ The transition temperature was obtained from a differential thermal analysis study of the compound. The authors would like to thank Dr. Ruth Denison of the Perkin-Elmer Corporation for obtaining the necessary thermograms.
(8) The procedure outlined in reference 2 was used. The scheme may be summarized as follows:

368

			Final Parameters			
Atom	x	У	Z	σχ	σy	σz
Cu	0	0	0	0	0	0
Cl(1)	0.1067	0.0368	-0.0062	0.0002	0.0005	0.0005
Cl(2)	-0.0110	0.2846	0.2814	0.0002	0.0005	0.0005
N	0.0961	0.4810	0.0152	0.0009	0.0019	0.0064
C(1)	0.164	0.527	0.046	0.003	0.006	0.007
C(1')	0.166	0.568	0.032	0.003	0.008	0.009
C(1, 2)	0.208	0.418	-0.015	0.005	0.014	0.019
C(1',2)	0.220	0.467	0.044	0.006	0.013	0.016
C(1,2')	0.209	0.423	0.127	0.005	0.015	0.015
C(1',2') ^c	0.214	0.551	0.104	0.005	0.014	0.017
			Temperature Factor	s ª		
Atom	β1	β22	β33	β12	β13	β ₂₃
Cu	0.00124	0.0121	0.0092	0.0001	0.0021	0.0022
	(0.00007) ^b	(0.0004)	(0.0004)	(0.0002)	(0.0004)	(0.0004)
Cl(1)	0.00177	0.0175	0.0306	0.0000	-0.0004	-0.0004
	(0.00014)	(0.0010)	(0.0014)	(0.0002)	(0.0007)	(0.0022)
Cl(2)	0.00198	0.0138	0.0098	0.0003	0.0008	0.0030
	(0.00013)	(0.0006)	(0.0005)	(0.0003)	(0.0003)	(0.0008)
N	0.0018	0.025	0.018	-0.0008	-0.0009	0.0022
	(0.0004)	(0.003)	(0.005)	(0.0011)	(0.0016)	(0.0039)
C(1) °	0.0028	0.022	0.023	0.0	0.0	0.0
out -	(0.0006)	(0.005)	(0.005)		• •	0.0
$C(1^{\prime})^{c}$	0.0030	0.024	0.025	0.0	0.0	0.0
	(0.0005)	(0.004)	(0.004)			
			R Factors			
		$R_1 = 0$	089 for all reflectio	ons		
		$R_1 = 0$ $R_1 = 0$	081 for observed re 097	fections only		
		1.0 1.1			1.00.110 6.0	

^a The anisotropic temperature factors are defined by $T = exp - (\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)$. ^b Standard deviations are given in parentheses. ^c Anisotropic temperature factors were not varied. The temperature factors from C(1') were assigned to the remainder of the carbon atoms.

cial positions in the space group Pbca and they were subsequently placed at the origin and the corresponding symmetry related positions. A two-dimensional Patterson synthesis⁹ parallel to (001) allowed approximate positions for the two unique chlorine atoms and the unique nitrogen atoms to be deduced. A Fourier synthesis computed from structure factors obtained from the first crystal, based on signs obtained from structure factor calculations using the positions obtained above, failed to yield positions of the carbon atoms. Least squares refinement¹⁰ of the positional parameters and isotropic temeprature factors of the copper, chlorine, and nitrogen atoms was begun immediately at this point in order to eliminate as many uncertainties as possible from the Fourier synthesis. Fourier and difference Fourier syntheses, again with data from the first crystal, indicated two possible positions for the carbon atom attached to the nitrogen atom. The maximum of the electron density for both positions was about onehalf of the maximum of the electron density of the nitrogen atom. At this time the data from the se-

lographic Least Squares Prog Report ORNL-TM-305 (1962).

Inorganica Chimica Acta | 4:3 | September, 1970

cond crystal was available, and a difference synthesis with these data again indicated two possible positions which gave equally satisfactory agreement but yielded isotropic temperature factors which unrealistically high. Refinement of a disordered model, with one-half contribution from each carbon atom, yielded substantially better agreement and isotropic temperature factors which were reasonable.

Further refinement was initiated with anisotropic thermal parameters on the copper, chlorine, and nitrogen atoms. A value of $R_1 = 0.105$ was obtained with no contribution from the carbon atoms while $R_1 = 0.095$ was obtained with one carbon atom present with two-fold disorder. No unusual shifts of the positional parameters of the two carbon atoms occurred during the refinement and reasonable values were obtained for the N-C bond distances considering the large standard deviations. No attempt was made to refine occupation factors. Difference Fourier syntheses at various stages of this process revealed four small peaks, of approximately equal intensity, in the general region where the second carbon atom was expected. These positions were reasonable in terms of the expected geometry of the ethylammonium ion and the crystal packing. Car-

⁽⁹⁾ W. G. Sly, D. P. Shoemaker, and J. H. Vanden Hende, «Two and Three Dimensional Crystallographic Fourier Summation Program for the 1BM 7090 Computer ». ESSO Research and Engineering Co. Report CBRL-22M-62 (1962). This program was used for all subsequent electron density summations also. (10) A modified version of the ORFLS program was used throughout. See W. R. Busing, K. O. Martin, and H. A. Levy, «A Fortran Crystal-lographic Least Squares Program », U. S. Atomic Energy Commission Report ORNI-TM-305 (1962).

⁽¹¹⁾ W. R. Busing, K. O. Martin, and H. A. Levy, «A Fortran Crystallographic Function and Error Program», U. S. Atomic Energy Commission Report ORNL-TM-306 (1964).

Table II. Calculated and Observed Structure Factors.⁴

				· ·					
K= 0 L= 0	16 565 633	17 1001 992	Ke o Le j	6 906 930	11 1193 1164	2 549 -573	K= 9 L= 4	13 -266 270	K= 4 L# 6
6 2338 27R1		• • • •	1 -180 302	8 1271 1279	15 591 615	4 627 -623	1 694 623	17 - 394 530	0 762 803
8 1673 4027	K= 6 L= 0	K= 4 L= 1	1 -197 417	9. 335 -280	17 966 1026	5 -345 60	2 702 -570	19 680 522	2 621 654
12 2360 2203	0 821 809	0 077 -012	5 690 474	10 -253 174	19 847 976	6 618 -579	3 594 525		4 437 349
14 562 647	2 623 773	1 469 591	Y-0 1= 2	11 -256 -265	x	J - 353 225	4 414 -442	K= 4 L= 5	6 -274 382
16 585 674	4 407 418	2 919 -954	K- V - L- 7	13 -274 -238	K# 2 L# 3	10 -320 -314	6 - 262 117	2 462 -420	10 601 700
18 1718 1922	6 577 431	3 665 762	4 2147 -2174	14 618 479	0 523 -459	12 -330 -316	7 474 444	3 402 -342	12 580 506
20 1314 1325	R 687 689	4 887 -921	5 405 -449	15 -279 -173	1 476 -357	×. • · · ·	8 -263 213	4 467 -501	14 -375 318
K= 1 L= 0	12 556 584	6 R11 - R11	7 197 -415	18 -332 595	2 588 -567		9 451 447	5 -287 -14	18 -418 444
	14 -315 351	7 488 491	8 1303 1130	20 -351 152	3 4/0 -472 4 666 -611	1 734 797	11 -278 291	6 447 -437	10 410 404
6 1140 1056	K- 0 1- 0	8 655 -650	9 344 -247		5 -727 159	3 728 831	12 671 -640	Km 5 L# 5	K= 6 L= 6
10 608 613	K- # C- ()	9 -256 4	10 2166 1075	K# 4 L- 2	6 539 -494	5 794 855	×- 4 1 • 4		
12 196 511	0 - 106 283	11 444 415	12 702 698	0 1539 1558	7 -236 194	9 622 619		1 1130 1192	0 /55 460
14 781 802	2 436 414	12 485 -434	13 -261 -325	2 762 768	9 -236 -70	11 593 568	0 2000 1903	5 1036 1011	K= 1 L= 7
16 763 835	4 441 447	13 498 445	14 477 -374	4 -221 -144	10 -248 -263	13 661 531	2 1556 1456	7 983 1019	
20 - 297 424	K= 1 L= 1	14 - 296 - 337	15 -282 -566	8 978 913	11 -250 -298	15 -400 484	6 917 863	9 906 970	1 608 675
		17 -318 332	17 -102 -118	10 1151 1151	13 - 264 - 319	11 420 400	8 1388 1287	11 749 802	5 - 293 407
K≖2 L≉0	3 2563 2359		18 1231 1237	12 567 632		K= 0 L= 4	10 1377 1333	15 764 574	7 522 587
0 2404 2442	7 2405 2188	K= 5 L= 1	19 - 123 - 284	16 - 304 312	K= 3 L= 3		12 914 867	17 657 563	9 577 632
2 -150 50	9 2986 2729	1 1101 1354	20 1040 1033	18 747 736	1 2150 1995	0 1820 3901	16 436 472	19 601 471	13 -415 364
4 2185 -1954	11 1498 1604	3 1042 1084	K= 1 L= 2	20 620 658	3 1691 1540	4 1017 1049	18 750 654	K- 0 1.5 4	17 402 104
6 1116 919	13 317 379	5 932 1038		K. 6. 1. 7	5 1203 1126	6 1358 1363	23 732 558	x= 0 200	K= 3 L= 7
8 1206 1091	17 1378 1345	7 1050 1106	1 619 766	K=) L= 2	7 1593 1548	8 2458 2314	¥= 5 = Å	0 1353 1188	1 1026 1060
18 1727 1191	K= 2 L= 1	12 455 -438	5 285 -352	8 521 516	13 530 635	14 7533 2412	6 444 426	8 771 820	9 791 869
20 1096 985	A AAF AFA	1 2 595 568	7 579 541	10 525 -472	15 730 723	18 967 1109	7 -293 -280	9 469 -525	11 726 718
x- 0 1- 0	1 493 -526	14 481 -415	8 296 -257	12 747 -736	19 769 854	20 723 892	8 454 549	10 911 1020	13 702 558
	2 831 774	16 -310 -436	9 446 440	14 - 511 - 191	21 638 474	w	K= 6 L= 4	14 521 247	17 -404 503
2 1112 -1176	3 537 -702	17 664 686	11 400 323	K= 6 L≈ ?		K# L# 4		16 -332 405	
4 943 986	4 772 700	18 -327 -378	12 934 -956		K= 4 L= 3	1 937 -937	0 637 716	18 739 677	K= (L= 8
6 329 169 P 543 545	5 527 480 6 641 601	20 691 -326	13 -246 230	0 1040 1130	0 716 747	2 - 221 - 81	2 595 610	20 802 . 843	0 793 767
10 916 -998	7 478 447	20 071 710	15 - 264 170	4 705 742	1 -275 -363	4 -227 119	A 376 437	K= 1 L= 6	2 572 596
12 1284 -1220	8 487 496	K= 6 L= 1	18 -315 422	6 772 693	2 637 643	5 907 -848	8 492 567		4 448 378
14 457 -468	9 321 55	0 710 731	20 -335 -513	A 878 863	4 484 486	0 489 502 7 727 -736	10 541 599	1 761 791	6 - 393 355
18 -294 -151	11 -232 -149	1 466 -406	x - 2 = 2	12 657 661	5 441 360	8 656 635	12 607 467	5 660 680	10 717 627
20 -112 -550	12 334 272	2 701 720	x- 2 L- 2	14 546 449	6 462 451	9 549 -570	16 - 395 336	7 586 610	
x- 1 1- 1	13 -249 -287	3 498 -472	0 5774 5799	16 - 397 401	7 555 550	10 - 266 356	18 -417 368	9 491 549	K= 1 L= 8
	15 -268 299	4 636 610 5 - 201 255	7 3422 3365	20 -438 385	9 - 260 230	12 -281 296		11 -214 425	1 542 -588
0 1274 1425	16 -783 129	6 642 564	4 1465 1289		10 481 417	18 - 352 415	K I L. J	K= 2 L= 6	3 529 -565
2 2372 2419	17 - 793 - 31	7 469 504	5 -202 23	K= 7 L= 2	11 -272 -101	.	1 1586 1578		5 607 -518
4 1098 1178	18 - 102 96	8 579 531	6 1711 1698	2 611 -451	Y . 5 . 3	K= 2 L= 4	3 1171 /138	0 1512 1591	K- 2 1- 8
8 2131 2086	14 - 517 - 51	10 407 447	8 3093 2931	K- 0 (- 0	N- <i>j</i> L- <i>j</i>	0 1604 1688	7 1228 1189	4 639 670	N= 2 L= 0
10 2232 2122	K= 3 L= 1	11 607 -273	s -236 218	K= 0 L= 2	1 581 602	2 761 789	9 1541 1469	6 670 701	0 714 715
12 1300 1342	N - U		10 3203 3134	0 459 446	3 434 448	4 482 -171	11 998 1002	8 1157 1102	2 677 594
14 472 560	1 1853 1793	K= 7 L=]	12 1701 1757	2 506 528	7 432 393	6 - 228 - 6	13 537 564	10 1155 1169	6 507 407 6 519 403
18 958 973	4 303 186	1 491 459	14 432 761	4 525 569	9 682 610	7 420 -46R	17 696 814	14 -343 358	8 658 591
20 761 774	5 649 587	3 461 485	18 1298 1368	8 526 418	11 438 467	8 1033 975	19 816 763	16 -439 422	10 676 648
x- 8 1. 0	6 321 274	5 635 617	20 986 1048	10 545 175	13 404 290	9 387 -434	21 -435 410	18 595 586	12 -447 463
K# 7 L# 0	7 1475 1439	7 482 479	K- 1 - 1	K- 1 1	17 678 474	12 582 669	K= 3 L= 5	20 -440 520	K= 1 L= 9
2 794 -762	9 1926 1833	K= 8 L= 1			19 -414 431	14 -280 45		K= * L= 6	
4 146 -195	10 364 356		1 502 -487	1 1799 1901		16 - 298 335	1 663 695		1 649 558
6 734 790	11 1198 1151	0 ~340 -458	2 673 645	3 1310 1328	K= 6 L= 3	18 746 844 20 764 764	5 -255 313	1 636 -610	3 - 399 481
10 -281 -101	13 406 363	7 -141 -434	3 574 -491	7 1506 1379	0 510 -540		7 551 546	5 603 -607	J -404 402
12 -295 -394	15 615 612		5 563 -523	9 2158 2030	1 = 338 292		9 814 747	7 514 -507	
							1, 400 507	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

^a The columns are h, $10|F_o|$, and 10 F_c. An unobserved reflection is denoted by a negative $10|F_o|$.

bon atoms were placed in these four sites with occupational factors of 1/4. Refinement of the positional parameters only for these atoms yielded a final value of $R_1=0.081$. No attempt was made to refine their thermal parameters since the high standard deviations made the values so obtained meaningless. Again, no unusual shifts occurred during the refinement and the bond distances and angles were reasonable although not as accurate as desired. The occupational parameters of these atoms were not refined either. The difference Fourier synthsis showed no further features above background.

Discussion of Structure

The three-dimensional structure determination has shown that the square planar $CuCl_4^{2-}$ ion does exist in this compound. This is only the second instance that this ion has been found, the other being in (NH₄)₂CuCl₄, although it has been postulated to exist

in Pt(NH₃)₄CuCl₄.¹² The independent Cu-Cl bond lengths are 2.277 ± 0.066 Å and 2.285 ± 0.004 Å and thus are equal within experimental error. The Cl(1)-Cu-Cl(2) bond angle is $90.0\pm0.3^{\circ}$ The (4+2) distorted octahedral arrangement is completed by sharing two chlorine atoms, from neighboring CuCl42ions. This ties the CuCl²⁻ ions into an infinite, twodimensional framework lying in the yz plane, as shown in Figure 1. These two additional chlorine atoms are perpendicular to the CuCl²⁻ plane (90.3 \pm 0.3°) and at a distance of 2.975 ± 0.005 Å. The plane of these ions is approximately perpendicular to the layer or sheetlike structure of the compound. Each Cu-Cl(1) is tipped 7.3° away from the a-axis while each Cu-Cl(2) is tipped 5.1° out of the yz plane.

In comparison with the bond distances found in $(NH_4)_2CuCl_4$, the significant feature seems to be a slight shortening of the four equatorial copper-clorine bonds and a considerable lengthening of the

Steadman, Willett | Crystal Structure of (C₂H₃NH₃)₂CuCl₄

⁽¹²⁾ M. Bukowska and M. A. Porai-Koshits, Crystallography, 5, 127 (1960) translated from Kristallografiya, 5, 137 (1960).

Bond Distances						
Bond	Distance	Bond	Distance			
Cu-Cl(1)	2.277 ± 0.006	$N-Cl(1)^{b}$	3.85 ± 0.05			
Cu-Cl(2)	2.975 ± 0.005	N-Cl(2)	3.33 ± 0.03			
$Cu-Cl(2)^{b}$	2.285 ± 0.004	$N-Cl(2)^{b}$	3.47 ± 0.03			
Cl(1) - Cl(2)	3.75 ± 0.01	$N-Cl(2)^{e}$	3.26 ± 0.03			
$Cl(1)-Cl(2)^{b}$	3.23 ± 0.01	N-Cl(2) ^g	3.05 ± 0.03			
N-C(1)	1.49 ± 0.07	C(1) - C(1, 2)	1.33 ± 0.13			
N-C(1')	1.66 ±0.07	C(1) - C(1, 2')	1.38 ± 0.13			
N-Cl(1)	3.33 ± 0.02	C(1')-C(1', 2)	1.47 ± 0.14			
NCl(1) °	3.52 ± 0.05	C(1')-C(1', 2)	1.43 ± 0.13			
N—Cl(1) d	4.16 ± 0.02	C(1)C(1')	0.68 ± 0.06			
	Bond Ar	ngles				
Angle	Value	Angle	Value			
Cu-Cl(2)-Cu	1^{f} 169.6±0.2°	N-C(1)-C(1, 2)	119±6°			
Cl(1)CuCl	(2) $90.3 \pm 0.3^{\circ}$	N-C(1)-C(1, 2')	127±6°			
Cl(1)-Cu-Cl	(2) ^b 90.0 \pm 0.3°	N-C(1')-C(1', 2)) 144±6°			
Cu-Cl(2)-Cu	1 ^c 169.7±0.2°	NC(1')C(1', 2	') 117±7°			
Cl(2)-Cu-Cl	(2) ^b $88.7 \pm 0.1^{\circ}$	Cl(2) = N - C(1)	121±2°			
		Cl(2) ^g -N-C(1')	^b 101 ± 2°			
^a Superscripts indicate symmetry transformations:						
	b = +x, 0.5-y,	-0.5 + z				
	c = +x, 0.5 - y	0.5 + z				
	d = +x - 10 + y	0.0 ± 7				

Table III. Interatomic bond distances and angles in $(C_2H_{3-}NH_3)_2CuCl_4 \alpha$

Figure 1. The CuCl₄²⁻ Ion and Its Packing in $(C_2H_5NH_3)_2$ -CuCl₄.

two axial copper-chlorine bonds. While the equatorial bonds changed by .02 to .05 Å, the axial bonds are lengthened from 2.79 to 2.97 Å. This is consistent with a series of complex copper(II) chlorides whose structures have been determined where the short Cu-Cl bonds range from 2.25-2.34 Å while the long Cu-Cl bonds cover a range from 2.64 Å in Cu₅Cl₁₀-(C₃H₇OH)₂¹³ to 3.18 Å in Cu₃Cl₆(CH₃CN)₂.¹³ If a van der Waals radius of 1.8 Å is assumed for the chloride ion, and a value of 2.3 Å for the length of the four Cu-Cl bonds in the equatorial plane, then the axial copper-chlorine distance is 2.77 Å if this distance is determined by van der Waals contact between

(13) Roger D. Willett and R. E. Rundle, J. Chem. Phys., 40, 838 (1964).

chlorine atoms. This would indicate that the CuCl₄²⁻ ion, as it exists in this compound, may be considered as a discrete species with the coordination to the fifth and sixth octahedral sites being largely determined by ionic and van der Waals interactions. This view is supported by the recent determination of the structure of (CH₃)₂NH₂CuCl₃ where each copper has an approximate square-pyramidal configuration (four chlorine atoms at 2.25-2.33 Å and a fifth at 2.73 Å)¹⁴ with the closest approach in the direction of the sixth octahedral site being made by a methyl group.

Figure 2. The Environment of the Nitrogen Atom.

The nitrogen atom lies particularly close to one chlorine atom in the yz plane (3.05 Å + 0.03 Å) and is in contact with seven more chlorine atoms at a distance of 3.26 to 4.16 Å. These eight chlorine atoms form a « hole » in which the nitrogen sits, as shown in Figure 2. The short N-Cl distance is indicative of a strong N-H---Cl type hydrogen bond. This is substantiated by the Cl(2)-N-C(1) and Cl(2)-N-C(1') bond angles which are close to the value of 109° expected if the N-H---Cl bond were linear. It appears that the stability of this type of structure for complex copper(II) halides is dependent upon the formation of these N-H-Cl hydrogen bonds. All of the compounds which assume this structure have cations of the type RNH_3^+ (R = H, CH₃, C₂H₅, CH(CH₃)₂) in which the RNH⁺₃ moieties are able to sit down in the holes formed by the chlorine atoms Cl(1).¹ Although K^+ and Rb^+ have essentially the same ionic radii as the $-NH_3^+$ group, they do not form tetrachlorocuprates, while Cs⁺, with a larger ionic radius, forms a distinctly different structure. Also, R₂NH₂⁺ and R₃NH⁺ ions do not assume this structure presumably because the $-NH_2^+$ or $-NH^+$ moiety does not fit into the holes between the chlorine atoms.

The ethylammonium ions lie approximately parallel to the a-axis, so that each Cu-Cl-N layer illustrated in Figure 2 is sandwiched between two layers of ethyl groups, forming neutral layers. These neutral layers are then stacked along the a-axis so that the only interactions between adjacent layers are non-bonded

(14) Roger D. Willett, J. Chem. Phys., 44, 39 (1966).

Inorganica Chimica Acta | 4:3 | September, 1970

interactions between ethyl groups. This arrangement is shown schematically in Figure 3. This explains

Figure 3. Schematic Packing Picture. Ethylammonium groups lie in front and behind the Cu-Cl chains illustrated.

the excellent cleavage properties perpendicular to the a-axis which are observed for this compound. It is found that a disordering of the ethyl groups occurs in this compounds, with C(1) twofold disordered and C(2) four-fold disordered, as illustrated in Figure 4. The two N–C and the four C–C distances show considerable deviation from the accepted values of 1.47 Å and 1.54 Å respectively, although, because of the large standard deviations associated with these

Figure 4. Disorder of Carbon Atoms in (C2H3NH3)2CuCl4.

distances, the discrepancies cannot be considered significant. The large standard deviations are the product of two circumstances: The dominant of the scattering power of the crystal by the heavier copper and chlorine atoms and the disorders of the ethyl groups. Since the role of the ethyl groups in this structure is of secondary importance, the inaccuracies in the determination of their positions is not particularly significant.

Acknowledgments. This work was supported by Petroleum Research Fund Grant 1592-A3 and by a grant from the Washington State University Research Committee.